
PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
ARTICLES

Critical hysteresis for n-component magnets
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Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
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Earlier work on dynamical critical phenomena in the context of magnetic hysteresis for uniaxial~scalar!
spins is extended to the case of a multicomponent~vector! field. From symmetry arguments and a perturbative
renormalization-group approach~in the path-integral formalism!, it is found that the generic behavior at long
time and length scales is described by the scalar fixed point~reached for a given value of the magnetic field and
of the quenched disorder!, with the corresponding Ising-like exponents. By tuning an additional parameter,
however, a fully rotationally invariant fixed point can be reached, at which all components become critical
simultaneously, withO(n)-like exponents. Furthermore, the possibility of a spontaneous nonequilibrium trans-
verse ordering, controlled by a distinct fixed point, is unveiled and the associated exponents calculated. In
addition to these central results, a didactic ‘‘derivation’’ of the equations of motion for the spin field are given,
the scalar model is revisited and treated in a more direct fashion, and some issues pertaining to time depen-
dences and the problem of multiple solutions within the path-integral formalism are clarified.
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I. INTRODUCTION

In a great variety of nonequilibrium situations, critic
behavior is observed as a system evolves from one o
possible states to another. Some examples are charge-de
waves, fluctuating interfaces and lines, cracks and fractu
and the Barkhausen effect in magnets. These systems ev
respectively, from a state without current to a state with c
rent, from a stationary to a moving state, and from a c
nected to a ruptured state, from a downward to an upw
magnetization. Under specific conditions~i.e., preparation of
the system!, the transition between the two states is critic
~or continuous!, exhibiting diverging correlation lengths an
scaling laws. The qualitative descriptions of the dynamics
the different physical situations mentioned are very sim
in the key parameters and mechanisms which govern c
cality. The quantitative descriptions are also close, in that
dynamics of motion can be described by continuum fi
equations, and share many common features. In this p
we focus on magnetic systems, more specifically on a lat
of spins with ferromagnetic exchange~coupling!. While our
qualitative and quantitative analyses will be in this fram
work, some aspects of the discussion may apply to o
systems, such as depinning transition of flux lines or fr
tures in disordered media.

What do we mean by ‘‘the key parameters and mec
nisms which govern criticality’’? Consider a ferromagnet
an external magnetic field which increases slowly from
2` to 1`. Each spin feels a local field equal to the avera
of the surrounding spins multiplied by the coupling const
(JMi in the case of thei th spin!, plus the external magneti
field H. At H52`, all the spins point ‘‘downward’’ (Mi
521 for unit spins!, thusJMi52J initially. At zero tem-
perature, each spin simply points in the direction of the lo
PRE 591063-651X/99/59~2!/1355~13!/$15.00
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field JMi1H, and so none of the spins change beforeH
reachesJ, at which point they all flip upwards. The magn
tization M thus jumps from21 to 11 at H5J. This sce-
nario for a perfectly clean system is modified by introduci
some disorder. At each lattice point occupied by a spin,
a random field,hi , to the local field,JMi1H. ~Specifically,
let hi be an uncorrelated random variable, chosen from
Gaussian distribution centered at zero.! Then, the spins flip
in a much less coherent way: as soon asJMi1H1hi be-
comes positive, thei th spin flips. The upwardhi ’s enhance
the increase in magnetization for lowH, whereas the down-
wardhi ’s suppress it for highH. This results in the reduction
of the magnitude of the jump in magnetization. Clearly, if w
broaden the random field distribution, i.e., increase
amount of disorder, the discontinuity inM is further sup-
pressed, until the curveM (H) eventually becomes smoot
for a high enough disorder~Fig. 1!. We can imagine a se
quence of hysteresis curves, corresponding to a successi
increasing amounts of disorder, say for the variance of
random field,h2, going from zero to infinity. The curve dis
plays a discontinuity for smallh2, and is smooth for large
h2. The transition between the two regimes occurs at a c
cal point reminiscent of continuous or second-order ph
transitions@1–4#: at the critical amount of disorder the dis
continuity collapses to a point at which the slope is infini
This is referred to as acritical hysteresis, for which, at a
given magnetic field, the susceptibility diverges. The amo
of disorder and the magnetic field are the two parameters
have to tune to observe criticality.

In the past few years, disorder-induced critical hystere
in magnets has been the subject of much interest@1–6#. Dah-
men, Sethna, and others studied this problem via a me
field approximation, one-loop momentum-space renorm
1355 ©1999 The American Physical Society
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FIG. 1. Schematic hysteresis curves for different values of the disorderR. Left: R,Rc ~discontinuous hysteresis!; center:R5Rc ~critical
hysteresis!; right: R.Rc ~smooth hysteresis!. In each case, the lower~upper! curve corresponds to an increasing~decreasing! magnetic field.
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ization, and numerical simulations. Also, they describe
mapping of this nonequilibrium problem onto the equili
rium random field Ising model, which can in turn be mapp
~close to the upper critical dimension! onto the pure Ising
model in two lower dimensions@7#. Throughout their work,
they consider a scalar order parameter. They study the
namics of an Ising~or discrete! spin field driven by an in-
creasing magnetic field and in the presence of a random fi
at zero temperature.

The question we ask here is the following: How are t
phase diagram and critical behavior modified if the ord
parameter is vectorial instead of scalar? More precis
stated: in the renormalization-group~RG! framework, is the
fixed point which controls the above-mentioned hystere
criticality one and the same for both the Ising and the v
torial cases? And if not, how do the exponents differ?
equilibrium, the disordering of scalar and vector system
described by distinct universality classes@7#. Also, in the
closely related context of depinning transitions, the disti
tion between interfaces~scalar! and flux lines~vector! was
noted in Ref.@8#.

The answer can readily be guessed on symmetry grou
Indeed, symmetry considerations lead to two distinct ca
In the first,and generic one, the critical hysteresis curve i
such that the susceptibility diverges at a nonvanishing va
of either the magnetic field or the magnetization. Then,
though we consider continuous spins, the full rotational sy
metry of the problem is broken at the critical point, a uniq
preferred direction is picked, and Ising-like critical behav
results. It is similarly argued, in Ref.@2#, Appendix E, and
Ref. @3#, Appendix L, that the universality class of the ra
dom field scalar model extends also to random bond sc
models~with a positive nonzero mean of the bonds’ value!
and to random anisotropyO(n) models. On the other hand
if both the magnetic field and the magnetization vanish wh
the susceptibility diverges, we may have a fully rotation
variant system at the critical point. In that case, we exp
O(n)-like criticality, with exponents that differ from those o
the Ising model. Evidently, a vanishing magnetization atH
50 is not a sufficient condition for a full rotational invar
ance. In particular, due to its history, the system might w
display higher-order anisotropies, such as, e.g.,si

2Þs'a
2 ,

wheresi is the component of the spin field parallel toH and
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s'a is any parpendicular component. This issue is resol
by a renormalization-group analysis, which confirms o
various guesses. Furthermore, it discloses the possibility
‘‘transverse critical point,’’ corresponding to an instability o
the magnetization componentperpendicularto the external
magnetic field.

The present paper is organized as follows. In Sec. II,
construct the equation of motion of a vector spin field.
path-integral formalism is described in Sec. III, with whic
the problem of renormalizing the equation of motion is rec
into that of renormalizing a partition function. The time d
pendences, as well as the subtleties associated with ‘‘m
energy minima,’’ are also examined. In Sec. IV, th
renormalization-group treatment of the problem is presen
First, we define the coordinates’ and fields’ rescalings, a
calculate the free propagator. Then, we discuss success
the scalar and vector models. For the latter, the differ
cases~hysteretic or nonhysteretic, longitudinal or transver
criticality! are analyzed, and the corresponding recursion
lations and exponents are obtained.

II. EQUATIONS OF MOTION

The equations of motion for a scalar field are discusse
Refs. @1–3#, and their generalization to a multicompone
field is straightforward. Nonetheless, for completeness an
emphasize our perspective, we present here a didactic in
duction to the equations of motion for vectorial spins, at ze
temperature@9#. Consider ad-dimensional lattice, with a spin
siPRn at each sitei, subject to a magnetic field which
changes slowly from2` to 1`, say linearly in time,
H5Vt. The rateV can be made arbitrarily small in magn
tude and points along the first axis of our coordinates, i
H15Vt[H, H25•••5Hn50. The time-dependent mag
netic field implies a time-dependent energy functionH(t).
At zero temperature (T50), the spins simply follow the
local minimum of this energy function according to

h] tsi52
dH
dsi

, ~1!

starting from a uniform downward pointing configuration
t52`. The parameterh controls the relaxation rate of spin
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PRE 59 1357CRITICAL HYSTERESIS FORn-COMPONENT MAGNETS
towards the time-dependent local energy minimum ofH.
The smallerh is, the faster spins relax, and the less they
behind the energy minimum@10#.

The following ‘‘key features’’ guide us in constructin
the HamiltonianH. First, to describe a ferromagnet, we i
clude inH couplingsJi j which tend to align the spins. In
addition to the external uniform fieldH which drives the
system, we include quenched random fieldshi . Thehi ’s are
uncorrelated Gaussian random variables, chosen from
distribution

r@h#5N expS 2(
i

hi
2

2RD , ~2!

whereN is a normalization factor. For calculational conv
nience we shall work with soft spins~whose magnitude can
take any real value!, which can be thought of as a coars
grained picture of a hard spin field. To avoid the unphysi
instability of spins diverging in magnitude, we introduce
on-site potentialV(si), which constrains the magnitude t
remain close to 1~or some finite number!. The potentialV is
spherically symmetric~a ‘‘double well’’ in the scalar model
and a ‘‘Mexican hat’’ in the vector model! and is expressed
through its Taylor expansion about the origin, as

V~si !52
c1

2
si

22
c2

4
~si

2!21•••. ~3!

Whether or notV is analytic at the origin is unimportan
sinceusi u is constrained to be close to 1~and not to 0!. The
full Hamiltonian is now given by

H52
1

2 (
i , j

Ji j si•sj1(
i

@2H–si2hi•si1V~si !#. ~4!

The gradient descent with this Hamiltonian leads to
equation of motion

h] tsi5(
j

Ji j sj1H1hi2
]V

]si
. ~5!

Assuming thatJi j is a function of the separation betwee
spins results, in the continuum limit, in

h] ts~x!5E ddx8J~x2x8!s~x8!1H~ t !1h~x!2
]V

]s
. ~6!

While rewriting the problem in the continuum limit, we mu
impose some limit on how fine-grained the spin fields„x…
may be because of its lattice origin. In other words,s„x… is a
superposition of Fourier components whose wave numb
are restricted from zero to some cutoffL.

Finally, if the exchange function decays fast enough~as
its argument increases! for its Fourier component to be non

singular at the origin of momentum space, i.e., ifJ̃(q)51
2Kq21•••, then

E ddx8J~x2x8!s~x8!'s~x!1K¹2s~x!, ~7!

and the equation of motion can be written as
g

he

l

e

rs

h] ts5K¹2s1H1h2
]Ṽ

]s
, ~8!

where the coefficientc1 in the the expansion of the potentia
has been modified in order to take thes(x) term of Eq.~7!
into account.

III. PATH-INTEGRAL FORMALISM

In order to identify the critical properties of our mode
we should ideally solve its equation of motion. In practic
we study the behavior of Eq.~8! under a coarse-graining
transformation. This allows us to locate and characteriz
scale-invariant point. As a first step, we recast the equa
of motion into a path integral~or generating functional!,
which incorporates the whole history of the system. The g
erating functional is written as the sum over all paths of
exponential of some action, which is then renormalized p
turbatively. The advantage of reformulating the problem
this way is that we can express the perturbative treatmen
a diagrammatic fashion similar to other field theories.

We define the generating functional@11# simply as the
sum over all paths of ad function, which makes each spi
follow the time evolution given by Eq.~8!, i.e.,

Z5E Dsd@s2solution of Eq. ~8!#

5E DsdS 2h] ts1K¹2s1H1h2
]Ṽ

]s
D 3~Jacobian!,

~9!

where Ds stands for )$over ‘‘all t,’’ ‘‘all x, ’’ a
51, . . . ,n%dsa(x,t). The Jacobian merely normalizes th
value of Z to unity, and we shall henceforth ignore it@12#.
Let us rewrite thed function in its representation as th
integral of an exponential@2pd( f )5*dŝexp(iŝf)#. Then, af-
ter absorbing a factori in a redefinition ofŝ, and dropping an
infinite multiplicative constant~along with the Jacobian!, we
have

Z5E DŝDs

3expH E dtddxŝ•S 2h] ts1K¹2s1H1h2
]Ṽ

]s
D J

[E DŝDs exp~S!. ~10!

Thegenerating functional Zenables us to evaluate all corre
lation and response functions. For example, the solution
Eq. ~8! is

ssol~x,t !5E DŝDs s~x,t !exp~S!, ~11!

and its response to the magnetic field is given by
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ds1
sol~x,t !

dH~ t8!
5E DŝDsE ddx8 ŝ1~x8,t8!s1~x,t !exp~S!.

~12!

Also, we can change the origin of time by a trivial repara
etrization of the magnetic field, as, e.g., in

ssol
„x,t1e;H~ t !…5ssol

„x,t;H~ t1e!…. ~13!

The latter expression takes the formssol
„x,t;H(t)1Ve… if H

is increased linearly in time at a rateV, whence

ssol~x,t1e!2ssol~x,t !5E DŝDss~x,t !exp~S!

3HexpS E dt8ddx8ŝ1Ve D21J ,

~14!

from which it follows that the dynamic susceptibility is ca
culated as

]ssol~x,t !

]t
5VE dt8ddx8E DŝDsŝ1~x8,t8!s~x,t !exp~S!.

~15!

Since we are interested in the average of the correlations
responses over the random field, from now on we deal w
the average ofZ. This enables us to forget the stochas
variableha , trading it for a new term in the ‘‘averaged ac
tion.’’ Taking advantage of the Gaussian nature ofha ,

Z̄5E DŝDs

3expH E dtddxŝ•S 2h] ts1K¹2s1H2
]Ṽ

]s
D J

3expE dtddxŝ–h

[E DŝDs exp~S!, ~16!

with @using Eq.~2!#

S5E dtddxŝ•S 2h] ts1K¹2s1H2
]Ṽ

]s
D

1E dtdt8ddx
R

2
ŝ~x,t !• ŝ~x,t8!. ~17!

We have reformulated the theory, originally described
a dynamical differential equation, in terms of an acti
S@s(x,t)#, which depends on the entire history of all spin
ThusS is a functional of the path which the system follow
the probability weight exp(S) picks the physical path an
averages it over disorder. We can then study the symme
and renormalization of the theory, as for equilibrium fie
theories.
-

nd
h

y

.

es

The motion comprises two time scales:h and (dH/dt)21.
The behavior of the system depends of course on the rati
the two, and not on their respective values. For the calc
tion of static exponents, we leth→0. Consider, for example
the exponentn, with which the correlation length diverges
A diverging correlation length gives rise to an infinite su
ceptibility, detected by a nonvanishing response~of the mag-
netization! to an infinitesimal increase of the magnetic fiel
Clearly, such a behavior is obtained in our problem only
the magnetic field increases infinitely slowly@i.e., (dH/dt)
→0#, or equivalently ifh→0. As h is a measure of how
much the system lags behind its local energy minimum,
h→0 the system always stays at the time-dependent m
mum ~as seen by settingh50 in the equation of motion!. In
other words, the spin avalanches resulting from a sm
change inH spread instantaneously.

In theh→0 limit, time evolution of the spin field is sim-
ply motion with the minimum in the energy landscape. The
is nevertheless a subtlety involved as to the choice of
minimum. For example, because of the double-well shap
the potential, a scalar spin has the choice, during some
interval of its history, between two positions, both of whic
locally minimize the Hamiltonian. If we solve the equatio
of motion, there is no ambiguity, since we specify one of t
energy minima as the initial condition, and then follow i
time evolution. In particular, the initial condition correspon
ing to the case of a magnetic field which increases fro
2` to 1` is one in which all the spins occupy the le
minimum of their double wells@14#. In the path-integral for-
malism, however, no initial condition is specified. Th
weight eS picks all possible solutions, corresponding to d
ferent initial conditions. Let us illustrate this point with, as
Ref. @15#, the zero-dimensional nonrandom version of o
model, defined by the equation of motion

h] ts52
]

]s
~2Hs1as21bs4!, ~18!

FIG. 2. Metastable solutions of the single-spin system. T
physical solution for an increasing magnetic field~solid line! fol-
lows the lower curve (s2) as long as it is present, then jumps alon
the dashed line to the upper curve (s1).
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PRE 59 1359CRITICAL HYSTERESIS FORn-COMPONENT MAGNETS
with h→0. We can imagines as a bead sitting at the min
mum of the quartic potentialQ(s)52Hs1as21bs4, and
moving with it. Witha,0 andb.0,Q(s) has a single mini-
mum if uHu is larger than some valueD, and two minima if
uHu is smaller thanD. For H very negative, the bead sits a
the single minimum of the curve, which becomes the l
minimum whenH is between2D andD. At H5D, the left
minimum disappears and the bead moves to the right m
mum. Thus, in particular,s(2H)Þ2s(H) and s(H50)
Þ0: the motion ofs is hysteretic~Fig. 2!.

The action for this model is

S5E dtŝ~2h] ts1H2as2bs3!. ~19!

Let ^s& be the average ofs with respect to the weighteS.
Calculating^s& perturbatively, it is easily seen~by counting
the possible occurrences ofs and ŝ in a diagram! that each
diagram comes with an odd number ofH ’s. Therefore,
^s(2H)&52^s(H)&, and in particular,̂ s(H50)&50, in
apparent contradiction with the above solution. But as m
tioned earlier, the partition function is merely the integral
a d function which imposes the equation of motion. In t
present case, it imposes

]

]s
~2Hs1as21bs4!50. ~20!

Thus, in calculatinĝ s&, we pick all minima of the quartic
form. In other words,^s& is the sum of two terms,̂ s&
5^s2&1^s1&, corresponding to the left and right minim
The physical ‘‘bead’’ solution is equal tôs2& up to H5D
and then̂ s1& for H larger thanD. Similarly, in the case of
our original problem, the quantityssol(x,t) of Eqs. ~11! and
~12! does not coincide with the physical solution we a
looking for. In addition to the latter,ssol(x,t) contains other
unwanted solutions corresponding to additional ene
minima. We shall come back to this difficulty and circum
vent it in the next section, both for the scalar and the vec
models.

IV. PERTURBATIVE RENORMALIZATION

A. Coordinates and fields rescalings; the free propagator

Our renormalization-group transformation consists of
usual three steps. First, we coarse-grain the system, i.e
tegrate out the modes with wave number betweenL/b and
L(b.1). Second, we rescale coordinates~i.e., change our
length and time units!, by setting

x→bx, t→bzt, ~21!
t

i-

-
f

y

r

e
in-

or, equivalently,

q→b21q, v→b2zv. ~22!

With this change of units, the coarse-grained fields vary
the same length scales as the original ones, and the la
cutoff is preserved. Third, we rescale the fields according

s~bx,bzt !→zs~x,t !, ŝ~bx,bzt !→ ẑ ŝ~x,t !, ~23!

or, equivalently,

s~b21q,b2zv!→bd1zzs~q,v!,
~24!

ŝ~b21q,b2zv!→bd1zẑ ŝ~q,v!.

With the choice

z52, ~25!

z5b22d/2, ~26!

ẑ5b222d/2, ~27!

the time derivative and Laplacian terms of the action, as w
as theŝŝ terms, become scale invariant. The recursion re
tions will be calculated to the lowest nontrivial order in th
interaction. To this order, no corrections of the paramet
h,K, or R of the action in Eq.~17! occur in the coarse-
graining transformation, i.e.,h, K, andR are invariant un-
der our perturbative renormalization.

As in the momentum-space RG treatment of thef4

theory, we consider the quadratic part of the action a
Gaussian~free! theory, and the rest as a perturbation~inter-
action!. Following Refs.@1–3#, for calculational convenience
we treat the disorder-inducedŝŝ term as an interaction, in
stead of including it in the Gaussian part. The free the
thus consists only of theŝs part of the action, and the corre
sponding bare propagators are

^sa~q,v!sb~q8,v8!&050,

^ŝa~q,v!ŝb~q8,v8!&050,

^ŝa~q,v!sb~q8,v8!&05dab2pd~v1v8!~2p!ddd~q1q8!

3
1

2h iv1Kq22r a

, ~28!

where^ &0 denotes an average with respect to the Gaus
weight and the indices run from 1 ton. The parameterr a is
the q-independent coefficient of the quadraticŝasa term in
the action. Fourier transforming back in time, we have
^ŝa~q,t !sb~q8,t8!&05H 0 if t8<t,

dab~2p!ddd~q1q8!expF2
Kq22r a

h
~ t82t !G Yh if t8.t.

~29!



d
e

in
tiv

all
nt

r
es
he

th
h
t

-
v

ov

o
s

n

d in
are

,
all
this

n
iga-
e-
re-

n-
nd
gu-

by

the
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~This is calculated forr a,0. As we shall see,r a is indeed
negative at criticality.! In the h→0 limit, the propagator
becomes

^ ŝa~q,t !sb~q8,t8!&05dab~2p!ddd~q1q8!

3
1

Kq22r a

d~ t82t1!. ~30!

That is, the contraction ofŝa(t) andsa(t8) is nonvanishing
only if the two times are equal~actually, only if t8 is infini-
tesimally higher thant). With this propagator, it is easily
seen diagrammatically that, although the disorder-induceŝŝ
terms couple different times, a renormalized vertex at timt
is a function only of the other verticesat the same time t.
Thus, slices of the action at different times renormalize
dependently from each other, and flow to their respec
fixed points. This justifies the procedure of Refs.@1–3# of
settingH constant for the calculation of static exponents.@In
what follows, we shall need to correct the action of Eq.~17!
to take care of the problem of multiple solutions. We sh
for example, expandS about a uniform but time-depende
value of the field, say some functions(t). Hence the verti-
ces ~coefficients inS), and in particular the ‘‘masses’’r a ,
become functions of the parameters(t). Note that the above
analysis of theh→0 limit is then legitimate only ifs(t) is
continuous, so thats(t1)5s(t). Below, we shall define ou
s ’s in terms of the magnetization or analogous quantiti
Thus, our analysis holds if we approach criticality from t
high disorder side.#

B. The scalar model revisited

The zero-dimensional model discussed in Sec. III is no
ing but the single-spin equivalent to the scalar field. T
apparent contradiction mentioned therein is also presen
the full model. Let us calls2(x,t) ands1(x,t) the solutions
of Eq. ~8!, for a magnetic fieldH increasing from2` to
1`, or decreasing from1` to 2`, respectively. The mag
netization measured experimentally is the average o
space, or equivalently over the random field, of the ab
solutions,

m6„H~ t !…5s6~x,t !. ~31!

Generically, as is inferred from the single-spin case and
served experimentally, the magnetization displays hystere
In particular,m6(2H)Þ2m6(H) and m6(H50)Þ0. On
the other hand, the action of Eq.~17! is invariant under the
transformation (ŝ,s,H)→(2 ŝ,2s,2H). This implies that
the average ofssol @Eq. ~11!# satisfiesssol(2H)52ssol(H)
and ssol(H50)50. As explained above,ssol contains un-
physical contributions~corresponding to the many minima i
the energy landscape! in addition to the physical solution (s2

in the case of an increasingH), i.e.,

ssol~x,t !5s2~x,t !1s8~x,t !1s9~x,t !1••• . ~32!

Hence the action
-
e

,

.

-
e
in

er
e

b-
is.

S5E dtddxŝ~2h] ts1K¹2s1H1as1bs31••• !

1E dtdt8ddx
R

2
ŝ~x,t !ŝ~x,t8! ~33!

does not describe the magnetization, unless it is correcte
such a way as to remove the unphysical solutions. These
inopportunely introduced through Eq.~9!, which should in
fact be written as

E DsdS 2h] ts1K¹2s1H1h2
]Ṽ

]s
D 3~Jacobian!

5E Ds$d@s2s2~x,t !#1d@s2s8~x,t !#

1d@s2s9~x,t !#1•••%. ~34!

Therefore, if we substract the quantity

d~s2s8!1d~s2s9!1•••

from the functionaleS, we obtain a well-defined theory
which incorporates only the physical solution and yields
the correct correlation and response functions. Although
method is impossible to implement~since it explicitly in-
volves the unphysical solutions!, a restricted, weaker versio
is applicable, and fully serves our purposes. The invest
tion of the critical behavior and the calculation of the corr
sponding exponents relies primarily on correlation and
sponse functions, namely the field densitys and its
susceptibility]s/]t, which are linear in s. For such objects,
d(s2s2)1d(s2s8)1d(s2s9)1••• can be replaced with
d(s2s22s82s92•••). Furthermore, only averaged qua
tities are of interest to the study of the critical point, a
linearity allows us to perform the average inside the ar
ment of thed function, leading to

d@s2m2~ t !2s~ t !#, ~35!

where

s~ t !5s8~x,t !1s9~x,t !1•••. ~36!

A comparison with Eqs.~9! and~16! implies that a weighteS

which properly describes the averaged theory is obtained
addings(t) to the argument of the action. Indeed, for

^s&[E DŝDss~x,t !eS[ ŝ,s] , ~37!

we have^s&5m2(t)1s(t); therefore, shifting the field by
s(t) yields

E DŝDss~x,t !eS[ ŝ,s1s]5E DŝDs@s~x,t!2s~ t !#eS[ ŝ,s]

5^s&2s~ t !5m2~ t !. ~38!

The average spin dynamics is thus properly described by
corrected action
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S5S@ ŝ,s1s#

5E dtddxŝ~2h] ts1K¹2s1H1A01A1s1A2s2

1A3s31••• !1E dtdt8ddx
R

2
ŝ~x,t !ŝ~x,t8!, ~39!

where

A052h] ts1as1bs31•••,

A15a13bs21•••,

A253bs1•••, ~40!

A35b1•••,

A .

Although we cannot obtain the precise form ofs(t) with-
out solving for the many minima, its qualitative shape
easily found. Consider a very large~positive or negative!
magnetic field. The unphysical minima are due only to
spins in a very large random fieldh, such that the potentia
they feel still has two minima. When we take the avera
the minimas81s91••• contribute tos only with a very
small weight@}exp(2h2/2R)#, implying

s→06 as H→6`. ~41!

Furthermore, it follows from the definition ofs that s5
2m2 at H50. Thus,s(H) has a bell shape, shifted to th
right since the sum ofs and m2 is an odd function ofH
~Fig. 3!. The parameters(t), which corrects the coefficient
in S, breaks the up-down symmetry present in the action
Eq. ~33!. This is physically required, since in a hystere
system, the~nonequilibrium! magnetization breaks that sym
metry, in particular atH50.

To discuss the relevant terms in the action, we appl
renormalization transformation in 62e dimensions. All
terms of the action higher than cubic ins are irrelevant, and
after a large enough number of coarse-graining steps, we
left with the renormalized action

FIG. 3. Schematic shape of the parameters as a function of the
magnetic field.
e

,

f

a

re

S5E dtddxŝ~2h] ts1K¹2s1Ã01Ã1s1Ã2s21Ã3s3!

1E dtdt8ddx
R

2
ŝ~x,t !ŝ~x,t8!, ~42!

whereÃi>1’s are functions ofH throughs and Ã3 is nega-
tive to prevent the spins from diverging in magnitude. Fu

thermore, it is easily shown thatÃi is an even~odd! function
of s for i odd ~even!. In particular, sinces→0 as H→
6`, we also have thatÃ2→0 asH→6`. Now, in order to
find the critical point, let us expand the field about som

value m(t), so as to cancelÃ2 . With the choicem5

2Ã2/3Ã3 , the action in terms ofs8[s2m becomes

S5E dtddxŝ~2h] ts81K¹2s81Ã081Ã18s81Ã38s83 !

1E dtdt8ddx
R

2
ŝ~x,t !ŝ~x,t8!, ~43!

where the coefficients have been corrected bym. Since^s&
→6` as H→6`,^s& crossesm at a given H0 , i.e.,
^s(H0)&5m(H0). Hence ^s8(H0)&50, which implies in

general thatÃ08(H0)50. The action thus reduces to that stu
ied in Refs.@1–3#, and is critical for a specific amount o
disorderR.

C. The vector model

1. The appropriate action

The first question in the case of vector spins is whet
the action of Eq.~17! correctly describes the system. Th
single-spin problem is identical to that of a bead moving in
Mexican hat tilted byH1h, the sum of the externalH(t)
and the quenched random fieldh. The bead simply turns
around the bump of the hat, i.e., the spin always points in
direction of H1h, as in the equilibrium problem. The mo
tion is governed by a single minimum, and there is no h
teresis. Similarly, mean-field theory reduces the time evo
tion of the spin field to that of a single degree of freedo
and yields no hysteresis for any value of the disorder. Th
observations may suggest that Eq.~17! properly describes
the problem, and that criticality occurs atH50, simulta-
neously for the components of the field parallel and perp
dicular toH. However, although a single spin has only o
minimum in its energy landscape, a configuration of seve
spins may have many. Consider a system composed of
spins of unit length, in an increasing magnetic fieldH, and
with random fields1D and 2D perpendicular toH, as il-
lustrated in Fig. 4.

The Hamiltonian for this system is

H52Js1•s22D–~s12s2!2H•~s11s2!. ~44!

If u1 andu2 are the angles of the spins with respect toH, the
minimum energy path that the spins follow imposesu15
2u2[u, and in terms ofu, the energy is

H52$J~sinu!22D sinu1H cosu%2J. ~45!
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For D,2J and H50, the energy as a function ofu is a
symmetric double well centered onu5p/2 ~Fig. 5!, similar
to the scalar single-spin energy landscape, with two min
at sinu5D/2J. A nonvanishingH tilts the double well, and
ultimately suppresses one of the two minima. The ferrom
netic interaction causes the two spins to pull each other b
before jumping ahead, thereby investing then-component
field’s motion with a hysteretic, uniaxial-like character. Th
is, the two-spin toy system as a whole goes over an ene
barrier, reminiscent of the motion of a scalar spin and
contrast with that of a single multicomponent spin whi
turns around the energy barrier. Interestingly, the Ising~hys-
teretic! behavior of thelongitudinal component results both
from the interaction and from the presence of atransverse
random field.

In the zero dimensional~single spin! or infinite dimen-
sional ~mean field! case, the system follows a single min
mum and there is no hysteresis. When fluctuations are
cluded, however, the above toy system shows that m
minima appear, allowing for a hysteretic behavior. Thus,
in the scalar case, the action of Eq.~17! has to be corrected
in order to remove the unphysical minima. Following t
procedure of Sec. IV B, we replaces(x,t) by s(x,t)1s(t),
to obtain, ifs is parallel toH, the corrected action

FIG. 4. Illustration of the two-spin toy model described in t
text.

FIG. 5. Energy profile of the two-spin toy model, for differe
values of the magnetic fieldH. At H50, the double well is sym-
metric. Larger values ofH tilt the curve, eventually suppressing th
left minimum.
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S5S@ ŝ,s1s#

5E dtddxŝi$2h] t~si1s!1K¹2si

1H1c1~si1s!1c2@~si1s!21s'
2 #~si1s!1•••%

1E dtdt8ddx
R

2
ŝi~x,t !ŝi~x,t8!1E dtddxŝ'•$2h] ts'

1K¹2s'1c1s'1c2@~si1s!21s'
2 #s'1•••%

1E dtdt8ddxŝ'~x,t !• ŝ'~x,t8!, ~46!

where the subscriptsi and' refer to the components paralle
and perpendicular to the magnetic field. Expanding the po
nomials and absorbing the parameters in thereby corrected
coefficients leads to the form

S5E dtddxŝi~2h] tsi1K¹2si1A01A1si1A2si
21Ā2s'

2

1A3si
31Ā3s'

2 si1••• !1E dtdt8ddx
R

2
ŝi~x,t !ŝi~x,t8!

1E dtddxŝ'•~2h] ts'1K¹2s'1B1s'1B2sis'

1B3s'
2 s'1B̄3si

2s'1••• !

1E dtdt8ddx
R

2
ŝ'~x,t !• ŝ'~x,t8!. ~47!

Clearly, only even powers ofs' are present in the first line
while only odd powers occur in the third. A term of orderp
in s, trivially ~i.e., ignoring the coarse-graining step whic

couples different order terms! scales with b21dẑzp

5b2p2(p21)d/2. In dimensionsd<4, all terms are relevant
and a nontrivial fixed point at long length scales cannot
general be reached by tuning merely two quantities, nam
the external magnetic field and the amount of randomnes
is much the same ford55, in which terms up top55 are
relevant. In 62e dimensions, however, all terms withp.3
are irrelevant under the RG, leading to an effective action
the form of Eq.~47!, with any terms not displayed set t
zero. Including the corrections due to coarse graining,
lowest nontrivial order~in the interaction and ine562d)
the recursion relations for the remaining 10 vertices read

A085b32e/2@A01~ I 12A1!A21~n21!~ I 12B1!Ā2#,

A185b2@A113~ I 12A1!A31~n21!~ I 12B1!Ā3#,

B185b2@B11~n11!~ I 12A1!B31~ I 12B1!B̄3#,

A285b11e/2@A2118A2A312~n21!Ā2B̄312~n21!B2Ā3#,

Ā285b11e/2@Ā212A2Ā312~n11!Ā2B312B2Ā314Ā2Ā3#,
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B285b11e/2@B214B2B̄312~n11!B2B312B2Ā3

14A2B̄314Ā2B̄3#,

A385be@A3118A3
212~n21!Ā3B̄3#,

Ā385be@Ā314Ā3
216A3Ā312~n11!Ā3B314Ā3B̄3#,

B385be@B312~n17!B3
212Ā3B̄3#,

B̄385be@B̄314B̄3
212~n11!B3B̄316A3B̄314Ā3B̄3#,

~48!

whereI 5L2(b221)/2b2 ln b and a factor ofR ln b/(4p)3 is

absorbed in a redefinition ofA2 , Ā2 , B2 , A3 , Ā3 , B3 ,

and B̄3 . @For the derivation of the corresponding relatio
for the scalar model, the reader is referred to Refs.@2,3#; the
extension to the effective action of Eq.~47! is straightfor-
ward.#

2. Ising criticality

Clearly, a nontrivial fixed point for all 10 vertices cann
be reached in general if only two quantities are to be tun
However, if R is appropriately tuned,A1 flows to its fixed
~finite! value whileB1 grows indefinitely. Then, under th
RG, the interactions in the perpendicular components
come less and less important with respect to the quad
term. After sufficient rescalings, the theory becomes Gau
ian in the perpendicular fields which can be integrated o
resulting in an effective action forsi identical to the scalar
action of Eq.~39!. Thus, the critical point of ourO(n) model
is generically described by the same action as in Refs.@1–3#,
yielding identical recursion relations and exponents. This
be physically understood in the following way: if a config
ration of several spins gives rise to many minima, a coa
grained vector-spin system roughly looks like an Ising s
tem, leading to scalarlike critical behavior. The latter occ
for a nonvanishing value of the magnetic field or the mag
tization, at which the full rotational symmetry of theO(n)
model is broken.

3. Transverse criticality

In the case considered above, the longitudinal field
massless and the transverse components are massive.
natively, one should be able to reach another fixed po
which incorporates the reverse situation. In Eq.~47!, let us
expand the longitudinal field about some parameterl(t), so
chosen as to cancel the linear termA0 , i.e., we write

si5si81l, ~49!

with l satisfying

A01A1l1A2l21A3l350. ~50!

The theory is then Gaussian insi8 . Integrating out the longi-
tudinal field, the actionfor the transverse fieldreduces to Eq.

~42! with ( ŝ' ,s') instead of (ŝ,s), andÃ05Ã250, i.e.,
d.

e-
tic
s-
t,

n

e-
-
s
-

s
ter-
t

S5E dtddxŝ'•@~2h] t1K¹21r'!s'1B3s'
2 s'#,

~51!

wherer' denotes the corrected mass~see below!. As in the
case of the scalar model, this action is critical for an app
priate value of the disorder, or equivalently of the ‘‘mass
The recursion relations forr' andu'[R@ ln b/(4p)3#B3 can

be read off from Eq.~48! by settingAi5Āi5B25B̄350, as

r'8 5b2$r'1@~n21!12#~ I 12r'!u'%,
~52!

u'8 5be$u'12@~n21!18#u'
2 %.

From these recursion relations we can obtain the static ex
nentn with which the correlation lengthj diverges. By defi-
nition j;(R2Rc)

2n;ur 2r cu2n, which, along with j8
5j/b and (]r 8/]r )fixed point5b22{[( n21)12]/[(n21)18]} e

[byr, yields (byrur 2r cu)2n5ur 2r cu2nb21, i.e., nyr51,
and

n5
1

2
1

1

2

~n21!12

~n21!18
e. ~53!

Note that the action of Eq.~51! is identical to the critical
action for n21 ~weakly coupled! scalar fields, with rota-
tional symmetry. It follows immediately from this conside
ation that the recursion relations and exponents for the
gitudinal ~Ising-like! fixed point are identical to those
calculated here, withn2151.

In the reduced action, the transverse components’ b
mass becomes

r'5B11B2l1B̄3l2. ~54!

The critical liner'
* (u') is in the lower half (r',0) of the

(r' ,u') plane. SinceA0→6` asH→6`, Eq.~50! implies
that l also goes from2` to 1` as the field is increased

„similarly to Ã3,0 @Eq. ~42!#, we haveB̄3,0…. Thus, r'

crosses the critical line for a given value ofH, provided that

B2
224B̄3@B12r'

* (u')#>0, i.e., unlessB1 is too negative
~for a Mexican hat potential, we expectB1.0). This may
not be true ifA0 is a discontinuous function ofH. But A0(H)
is clearly continuous for critical and higher disorders.~A
very high disorder, though, may suppress this transve
criticality by renormalizingr' into large negative values.!
Whether or not the fixed point controlling the transver
criticality is reachable experimentally depends on what
gion of the space of the theory’s parameters is swept w
the physical quantities at hand in the experiment are var
Unlike many equilibrium problems in which the symmetry
broken by an infinitesimal field, criticality can occur here
large values ofH, allowing for non-negligible higher-orde
terms, such asH2si

2 or H2si
2s2, in the Hamiltonian. These

terms appear in the theory as modified~strong! functional

dependences of the coefficientsAi ,Āi ,Bi ,B̄i , on the mag-
netic field, which, depending on the trend, may favor a tra
verse instability.

The transverse critical point corresponds to an infin
susceptibility at someH' , resulting in a spontaneoustrans-
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1364 PRE 59RAVÁ da SILVEIRA AND MEHRAN KARDAR
verse magnetization. A similar phenomenon was noted fo
the case of a pure~thermal! system in Ref.@16#. There, how-
ever, the appearance of a transverse magnetization is due
magnetic field which oscillates at high frequency. It is
purely dynamical effect, not observed in theh→0 limit. In
our case, the effect is due to the presence of a quenc
randomness, and its nonequilibrium nature lies in the m
stability of the minima occupied by the system during
history. This transverse instability, though, differs from t
longitudinal criticality in that it occurs for a range of diso
ders, rather than at a specifically tuned amount of rand
ness. Its underlying physical mechanism may, for exam
be illustrated by two beads, attached to each other b
spring, and flowing on the two sides of a Mexican ha
bump, as it is progressively tilted. At some point, it mig
become favorable for one of the beads to jump on the op
site side of the rim, and to continue its motion next to t
other bead, corresponding to a transverse ordering.

At H' , the transverse components choose one of
many minima, which breaks the rotational symmetry in t
(n21)-dimensional transverse space. We therefore hav
correct the action of Eq.~47! for H.H' , as we did for the
longitudinal field. This, however, does not alter the analy
of the longitudinal criticality. By shiftings' , we eliminate
the transverse linear term and can then follow the same
cedure as before. We used the fact that the correction to
~47! vanishes forH→6`, and this clearly still holds here

4. O„n… criticality

In the above, we examined two distinct fixed points, c
responding to an infinite longitudinal susceptibility and
transverse ordering, respectively. For a specific choice of
theory’s parameters, the two should merge into a single,
tationally invariant~in then-dimensional space of the fields!
fixed point, at which all components become simultaneou
critical. In addition to the magnetic field and disorder, ho
many quantities should we tune to reach such anO(n) fixed
point? While Eq.~47! is a suitable formulation of the mode
when the symmetry is broken in the longitudinal directio
the form of Eq. ~46! is more appropriate close to a full
rotationally invariant theory. An RG transformation can
carried out for it, as was done for the action of Eq.~47!.
Sinces(t) is spatially uniform, only itsq50 mode is non-
vanishing. The parameters, therefore, does not participat
in the coarse-graining transformation and its normalizatio
given by the rescalings of the coordinates and the fields

s8~ t !5z21s~b2t !5bd/222s~b2t !. ~55!

The recursion relations forH, c1 , andc2 , on the other hand
are obviously given by Eq.~48!, with A05H, A15B1

5c1 , A35Ā35B35B̄35c2 , andA25Ā25B250.
By tuning both the magnetic fieldH and H0 , defined as

the zero ofs @s(H0)50#, to zero, the action of Eq.~46!
reduces to the form of Eq.~51!, with n fieldss rather than the
n21 components ofs' , which is critical for a given value
of the disorder. Consequently, the recursion relations
exponents are identical to those characterizing the transv
critical point, but withn replacingn21. Furthermore, since
H50 and the action is fully rotationally invariant, hysteres
is suppressed at theO(n) critical point; in particular,m(H
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50)50. Finally, by identifying the relevant parameters,
we have established that only a single additional phys
quantity needs to be tuned to reach theO(n) fixed point
~provided thatH0 crosses zero as the physical quantity
question is varied, atH50).

The symmetric fixed point is characterized by three r
evant parameters, namelyr andH, with the usual exponents
yr522e(n12)/(n18) and yH532e/2, and s with ys

5d/222, to O(e). The parameters is a measure of the
deviation from a symmetric~nonhysteretic! theory atH50,
and, according to the above exponents, is much less rele
than the other symmetry-breaking termH, or of the massr,
to O(e). Reference@4# notes the fact that the ‘‘critical re
gion’’ is unusually large in the scalar model, as signaled
power laws with surprisingly high cutoffs even a few perce
to one hundred percent away from the critical disorder, a
briefly discusses possible origins of this phenomenon. T
observation, along with the weakness ofs ’s relevance, sug-
gests in our case that even away from theO(n) fixed point,
anO(n)-like behavior might be displayed at short ranges
the system, before crossing over to an Ising-like behavio
long enough time and length scales@9#.

As mentioned in the Introduction, a vanishing magnetiz
tion does nota priori ensure a fully rotationally invarian
system; higher moments could in general display anisotro
In that case, a complete theory would break the rotatio
symmetry, leading to anisotropic exponents different fro
yr ,yH , andys above, which are the outcome of a restrict
action that properly describes only quantities linear in
spin field. In general we may ask the following questio
which applies to the Ising, transverse, andO(n) cases.
Would a complete theory yield the same exponents as
resticted theory? The latter correctly describes the magn
zationm2(t). That is, if one were able to calculate the pa
integral

E DŝDss~x,t !eS[ ŝ,s1s] , ~56!

one would obtainm2 as a function ofH(t), R, and an
additional tuning parameter~corresponding toH0), and thus
the associated exponents describing the critical singularit
the magnetization. It is easy to see that, as for the nonran
equilibrium thermal Landau-Ginzburg model, the expone
yr ,yH , and ys have a one-to-one correspondance with
exponents that characterize the singular behavior of the m
netization, as well as with those associated with a numbe
other quantities, such as the correlation length. This imm
diately implies an affirmative answer to the above questi
the requirement that the action should describe the phys
magnetization is a strong enough constraint for the theor
correctly generate the singularity of, e.g., the correlat
length. Evidently, this argument does not apply to the criti
behavior of higher moments of the spin field distributio
and whether or not the latter are isotropic at criticality is
interesting open question. In fact, even the isotropy ofyr at
theO(n) critical point may seem surprising at first, since t
history of the system apparently sets up an anisotropic c
text for the spins’ motion. It is consistent, however, with t
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fact noted in Sec. IV A that different time slices of the acti
decouple under the RG in theh→0 limit, in which the static
exponents are calculated.

As the reader may have noticed, our recursion relati
and exponents ind562e are none other than the recursio
relations and exponents for the pure~equilibrium! O(n)
model in d542e. Indeed, dimensional reduction to tw
lower dimensions holds perturbatively@2,3,17,15#. This al-
lows us to obtain, with no further calculational effort, th
expansion forn to higher orders ine @18#.

The dynamic exponentz, on the other hand, cannot b
obtained from a time-independent model. How is the ren
malization procedure modified whenhÞ0? In the coarse-
graining process, vertices which couple different times
generated. In particular, a nonlocal quadratic term of the t

E
2`

t8
dtŝi~ t8!si~ t ! f ~ t82t ! ~57!

is generated in the action, wheref is some function~contain-
ing free propagators, disorder, etc!. Expandingsi(t) about
t8, this is rewritten as

E
2`

t8
dtŝi~ t8!H si~ t8!1

]si

]t U
t8

~ t2t8!1•••J f ~ t82t !.

~58!

The first term contributes to the coarse-grained ‘‘mass,’’
second results in a correction toz. In fact, the perturbative
calculation we just briefly described is similar to that do
by Krey @19# for the time-dependent thermal random fie
model, where he calculatesz to O(e3), giving to lowest non-
trivial order in e,

z521
n12

~n18!2
e2. ~59!

~Here,n is the number of components that become mass
at criticality.!

V. CONCLUSION

The main aim of the present paper was to extend ea
work on critical hysteresis to the case of an ordering of c
tinuous symmetry. Our central result is that, generica
criticality is Ising-like, i.e., the critical exponents calculate
for a scalar field model@1–3# still hold for a vector field. By
tuning a single additional quantity, however, a fully symm
ric fixed point can be reached, to whichO(n)-like exponents
are associated. Furthermore, the possibility of a spontan
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nonequilibrium transverse magnetization is unveiled and
amined using a perturbative renormalization scheme. In
dition, we have clarified several issues pertaining to the pa
integral formalism, in particular to the structure of tim
dependences, and to the problem of multiple solutions. Th
analyses are useful for our treatment of the problem, as w
as for a clearer understanding of earlier works.

An interesting question which remains open is that of
lower critical dimension. In the fully rotational case, naiv
dimensional reduction suggests that the lower critical dim
sion is 4. If this were the case, no vector criticality should
observed in three dimensions. Several scenarios are pos
For example, the hysteresis curve may display a jump
low disorder and be continuous for high disorder, but wi
out the intermediate limit case of a continuous curve with
diverging slope at a given point. A more probable scenari
one in which the hysteresis curve is already smooth for
infinitesimal amount of disorder.
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APPENDIX: EXPANSION ABOUT MEAN FIELD THEORY

In Refs.@1–3#, the effective action is written as an expa
sion about mean-field theory~MFT!. In such a formulation,
the linear term in the action@corresponding toA0 in Eq. ~47!#
is vanishing. The ‘‘masses,’’ i.e., the coefficientsr i and r'

@corresponding toA1 andB1 in Eq. ~47!# of the parallel and
perpendicular quadratic terms are calculated as the elem
of a particular response tensor within MFT@13,1–3#. In this
appendix, we calculater i and r' , starting from the mean-
field equations of motion, and find that, generically,r i
Þr' . This appendix thus reaffirms that criticality is Ising
like in general, as found in Sec. IV, and makes contact w
the earlier methodology of Refs.@1–3,13#.

MFT is defined by an infinite-range coupling, leading
the equations of motion

h] ts~x!5m~ t !1H~ t !1f~ t !1h~x!1c1s~x!1c2s~x!2s~x!,
~A1!

wherem(t) is defined self-consistently bym(t)5s(x,t)u f50
and f(t) is a test field. The ‘‘masses’’ are the static comp
nents of the tensord s̄/df2I , whereI is the identity matrix
@13,1–3#. We have
dm

dH
5S dm1~H1H1 ,H2 , . . . !

dH1

dm1~H1H1 ,H2 , . . . !

dH2
•••

dm2~H1H1 ,H2 , . . . !

dH1

dm2~H1H1 ,H2 , . . . !

dH2
•••

A A �

DU
H15H25•••50

[S x i~H ! 0 0 •••

0 x'~H ! 0 •••

0 0 x'~H ! •••

A A A �

D .

~A2!
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~We considerh→0, so responses are nonvanishing only
equal times, and only the static part remains. Also, in MF
the magnetization is always parallel to the magnetic fie
leading to vanishing off-diagonal elements and to the re
tion x'5m/H @8#.! In order to calculate the relevant tenso
let us split the fieldf betweenm andH, in such a way as to
satisfy Eq. ~A2! for effective magnetization and magnet
field. That is, we write the equations of motion in the follow
ing fashion, with correctedm andH, and with no additional
field,

h] tsi5S m1
x i

11x i
f i D1S H1

1

11x i
f i D1hi1c1si1c2s2si

~A3!

for the longitudinal component, and

h] ts'5S x'

11x'

f'D1S 1

11x'

f'D1h'1c1s'1c2s2s'

~A4!
W

t/

e

tte

is
an
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he
co
e

a
a
ey
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m
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t
,
,
-

for the transverse components. Whence

d s̄

df
5S 1

11x i
21

0 0 •••

0
1

11x'
21

0 •••

0 0
1

11x'
21

•••

A A A �

D ~A5!

and

r i52
1

11x i
, r'52

1

11x'

52
1

11m/H
; ~A6!

thus,r i(H)Þr'(H) in general.
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