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Earlier work on dynamical critical phenomena in the context of magnetic hysteresis for urigocad)
spins is extended to the case of a multicomporteacton field. From symmetry arguments and a perturbative
renormalization-group approadim the path-integral formalisjnit is found that the generic behavior at long
time and length scales is described by the scalar fixed p@athed for a given value of the magnetic field and
of the quenched disorderwith the corresponding Ising-like exponents. By tuning an additional parameter,
however, a fully rotationally invariant fixed point can be reached, at which all components become critical
simultaneously, witlfO(n)-like exponents. Furthermore, the possibility of a spontaneous nonequilibrium trans-
verse ordering, controlled by a distinct fixed point, is unveiled and the associated exponents calculated. In
addition to these central results, a didactic “derivation” of the equations of motion for the spin field are given,
the scalar model is revisited and treated in a more direct fashion, and some issues pertaining to time depen-
dences and the problem of multiple solutions within the path-integral formalism are clarified.
[S1063-651%99)06902-0

PACS numbe(s): 05.40—a, 05.70.Jk, 64.66:i, 64.70—p

. INTRODUCTION field JM;+H, and so none of the spins change befére
) o o __reaches], at which point they all flip upwards. The magne-
In a great variety of nonequilibrium situations, critical tjzation M thus jumps from—1 to +1 atH=J. This sce-
behavior is observed as a system evolves from one of itaayio for a perfectly clean system is modified by introducing
possible states to another. Some examples are charge-densiyme disorder. At each lattice point occupied by a spin, add
waves, fluctuating interfaces and lines, cracks and fractureg, random fieldh; , to the local fieldJM; +H. (Specifically
and the Barkhausen effect in magnets. These systems evolfg; . pe an uncorrelated random variable, chosen from a
respectively, from a state without current to a state with curggssian distribution centered at zerdhen, the spins flip
rent, from a stationary to a moving state, and from a conj, 3 much less coherent way: as soonJad, +H+h; be-
. I I
nected to a ruptured state, from a downward to an upward,mes positive, théth spin flips. The upwardh’s enhance
magnetization. Under specific conditiofi®., preparation of i, increase in magnetization for lov; whereas the down-
the syst_em the transition b.etwe.en the two states s CrItICalward h;’s suppress it for higlid. This results in the reduction
(or qontlnuouas, exh|b|t|pg 'd|verg|ng. cprrelatlon lengths gnd f the magnitude of the jump in magnetization. Clearly, if we
scaling laws. The qualitative descriptions of the dynamics Orgroaden the random field distribution. i.e. increase the

the different physical situations mentioned are very simila : . o .
in the key parameters and mechanisms which govern criti‘r-’1mount of disorder, the discontinuity M is further sup-

cality. The quantitative descriptions are also close, in that th@€Ssed, until the curvél(H) eventually becomes smooth
dynamics of motion can be described by continuum field" @ high enough disordeiFig. 1). We can imagine a se-
equations, and share many common features. In this papgpence_of hysteresis curves, corresponding to a succession of
we focus on magnetic systems, more specifically on a latticicréasing amounts of disorder, say for the variance of the
of spins with ferromagnetic exchangeoupling. While our  random field h?, going from zero to infinity. The curve dis-
qualitative and quantitative analyses will be in this frame-plays a discontinuity for smah?, and is smooth for large
work, some aspects of the discussion may apply to othein®. The transition between the two regimes occurs at a criti-
systems, such as depinning transition of flux lines or fraccal point reminiscent of continuous or second-order phase
tures in disordered media. transitions[1-4]: at the critical amount of disorder the dis-
What do we mean by “the key parameters and mechaeontinuity collapses to a point at which the slope is infinite.
nisms which govern criticality”? Consider a ferromagnet in This is referred to as aritical hysteresis for which, at a
an external magnetic field which increases slowly from given magnetic field, the susceptibility diverges. The amount
—o to +o0. Each spin feels a local field equal to the averageof disorder and the magnetic field are the two parameters we
of the surrounding spins multiplied by the coupling constanthave to tune to observe criticality.
(JM; in the case of théth spin, plus the external magnetic In the past few years, disorder-induced critical hysteresis
field H. At H=—x, all the spins point “downward” M; in magnets has been the subject of much intdfies6]. Dah-
= —1 for unit sping, thusJM;=—J initially. At zero tem-  men, Sethna, and others studied this problem via a mean-
perature, each spin simply points in the direction of the locafield approximation, one-loop momentum-space renormal-
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FIG. 1. Schematic hysteresis curves for different values of the dis®desft: R<R, (discontinuous hysteregjcenter.R=R, (critical
hysteresiy right: R> R, (smooth hysteresjsin each case, the low¢uppe) curve corresponds to an increasiiigcreasingmagnetic field.
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0 0
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ization, and numerical simulations. Also, they describe as, , is any parpendicular component. This issue is resolved
mapping of this nonequilibrium problem onto the equilib- by a renormalization-group analysis, which confirms our
rium random field Ising model, which can in turn be mappedvarious guesses. Furthermore, it discloses the possibility of a
(close to the upper critical dimensiponto the pure Ising ‘“transverse critical point,” corresponding to an instability of
model in two lower dimensiong/]. Throughout their work, the magnetization componeperpendicularto the external
they consider a scalar order parameter. They study the dynagnetic field.

namics of an Isingor discret¢ spin field driven by an in- The present paper is organized as follows. In Sec. Il, we
creasing magnetic field and in the presence of a random fieldonstruct the equation of motion of a vector spin field. A
at zero temperature. path-integral formalism is described in Sec. Ill, with which

The question we ask here is the following: How are thethe problem of renormalizing the equation of motion is recast
phase diagram and critical behavior modified if the orderinto that of renormalizing a partition function. The time de-
parameter is vectorial instead of scalar? More preciselypendences, as well as the subtleties associated with “many
stated: in the renormalization-groyBG) framework, is the energy minima,” are also examined. In Sec. IV, the
fixed point which controls the above-mentioned hystereticenormalization-group treatment of the problem is presented.
criticality one and the same for both the Ising and the vec¥irst, we define the coordinates’ and fields’ rescalings, and
torial cases? And if not, how do the exponents differ? Incalculate the free propagator. Then, we discuss successively
equilibrium, the disordering of scalar and vector systems ishe scalar and vector models. For the latter, the different
described by distinct universality classgd. Also, in the caseshysteretic or nonhysteretic, longitudinal or transverse
closely related context of depinning transitions, the distinc-criticality) are analyzed, and the corresponding recursion re-
tion between interfacetscalaj and flux lines(vectop) was lations and exponents are obtained.
noted in Ref[8].

The answer can readily be guessed on symmetry grounds. Il. EQUATIONS OF MOTION
Indeed, symmetry considerations lead to two distinct cases.

In the first,and generic ongthe critical hysteresis curve is ~ The equations of motion for a scalar field are discussed in
such that the susceptibility diverges at a nonvanishing valuRefs. [1-3], and their generalization to a multicomponent
of either the magnetic field or the magnetization. Then, alfield is straightforward. Nonetheless, for completeness and to
though we consider continuous spins, the full rotational symemphasize our perspective, we present here a didactic intro-
metry of the problem is broken at the critical point, a uniqueduction to the equations of motion for vectorial spins, at zero
preferred direction is picked, and Ising-like critical behaviortemperatur¢9]. Consider ai-dimensional lattice, with a spin
results. It is similarly argued, in Ref2], Appendix E, and §efR" at each sitei, subject to a magnetic field which
Ref. [3], Appendix L, that the universality class of the ran- changes slowly from—« to +, say linearly in time,
dom field scalar model extends also to random bond scaldd=€t. The rateQ2 can be made arbitrarily small in magni-
models(with a positive nonzero mean of the bonds’ values tude and points along the first axis of our coordinates, i.e.,
and to random anisotrop®(n) models. On the other hand, H;=Qt=H, H,=...=H,=0. The time-dependent mag-

if both the magnetic field and the magnetization vanish whemetic field implies a time-dependent energy functiit).

the susceptibility diverges, we may have a fully rotation in-At zero temperature [=0), the spins simply follow the
variant system at the critical point. In that case, we expectocal minimum of this energy function according to
O(n)-like criticality, with exponents that differ from those of

the Ising model. Evidently, a vanishing magnetizatiorHat oH

=0 is not a sufficient condition for a full rotational invari- NHS= g @
ance. In particular, due to its history, the system might well

display higher-order anisotropies, such as, eﬁa& sfa, starting from a uniform downward pointing configuration at
wheres; is the component of the spin field paralleltband ~ t= —c. The parameter; controls the relaxation rate of spins
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towards the time-dependent local energy minimumaf Py,
The smallery is, the faster spins relax, and the less they lag 70:S= KV23+H+h—£, (8)
behind the energy minimuifri0].

The following “key features” guide us in constructing o ) ) )
the Hamiltonian. First, to describe a ferromagnet, we in- Where the coefficient, in the the expansion of the potential
clude inH couplingsJ;; which tend to align the spins. In Nas been modified in order to take th) term of Eq.(7)
addition to the external uniform fieltd which drives the INto account.
system, we include quenched random fidids The h;’s are
uncorrelated Gaussian random variables, chosen from the IIl. PATH-INTEGRAL FORMALISM

distribution ] ) . )
In order to identify the critical properties of our model,

hi2 we should ideally solve its equation of motion. In practice,
plh1=Nexp - > 55|, (20 we study the behavior of Eq8) under a coarse-graining
2R
! transformation. This allows us to locate and characterize a

whereN is a normalization factor. For calculational conve- Scale-invariant point. As a first step, we recast the equation

nience we shall work with soft spirsvhose magnitude can ©f motion into a path integralor generating functiona
take any real value which can be thought of as a coarse- whu;h mcorpprates the'whole history of the system. The gen-
grained picture of a hard spin field. To avoid the unphysicaferatmg functional is written as the sum over all paths of the

instability of spins diverging in magnitude, we introduce an&XPonential of some action, which is then renormalized per-
on-site potentiaV(s), which constrains the magnitude to turbatively. The advantage of reformulating the problem in

remain close to 1or some finite number The potential is this way is that we can express the perturbative treatment in

spherically symmetri¢a “double well” in the scalar model & diagrammatic fashion similar to other field theories.

and a “Mexican hat” in the vector modehand is expressed We define the generating _functior_lbll] simply as the_
through its Taylor expansion about the origin, as sum over all paths of & function, which makes each spin
follow the time evolution given by Eq8), i.e.,

c1, C
2 g 4 i Z:f Dsd[s—solution of Eqg.(8)]

Whether or notV is analytic at the origin is unimportant,

since|s| is constrained to be close to(éand not to 0. The ) Vv .
full Hamiltonian is now given by = | Dsd| — na;s+KV7s+H+h—— X (Jacobian,

(C)

1
o5 % s+ S [HS—hes V)] @

where Ds stands for I[I{over “all t,” “all Xx,” «
The gradient descent with this Hamiltonian leads to the=1. ... n}ds,(x,t). The Jacobian merely normalizes the
equation of motion value ofZ to unity, and we shall henceforth ignore[it2].
Let us rewrite thed function in its representation as the

integral of an exponentiaR«8(f) = fdsexp(sf)]. Then, af-

ter absorbing a factdrin a redefinition ofs, and dropping an

_ _ _ _ infinite multiplicative constantalong with the Jacobignwe
Assuming thatJ;; is a function of the separation between hayve

spins results, in the continuum limit, in

oV
n&tSZE ‘]ijsj+H+hi_a_'
i S

Vv = S
n&ts(x)zf 4% J(x—x")s(x') +H( +h(0 -~ . (© z IDSDS
While rewriting the problem in the continuum limit, we must X exp{ f dtddxg.( — pds+KV2s+H+h— ﬂ) ]
impose some limit on how fine-grained the spin fisld) s

may be because of its lattice origin. In other wors(g) is a R
superposition of Fourier components whose wave numbers Ef DsDs exp(S). (10
are restricted from zero to some cutaft

Finally, if the exchange function decays fast enouygb . :
y g Y g The generating functional Znables us to evaluate all corre-

its argument increasgfor its Fourier component to be non- "' : .
) . o~ lation and response functions. For example, the solution of
singular at the origin of momentum space, i.e.J{f})=1 Eq. (8) is

—Kg?+-- -, then
f ddX,\](X_XI)S(X,)~S(X)+sziX), (7) 5$0|(X,t):f DéDS S(X,t)quS), (11)

and the equation of motion can be written as and its response to the magnetic field is given by
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555 (x.1) The motion comprises two time scalesand @H/dt) 2.
1—/’= J pgsz’ ddx%’ §1(X’,t')sl(x,t)exp(5)_ The behavior of the system depends of course on the ratio of
SH(t") the two, and not on their respective values. For the calcula-

(12 tion of static exponents, we let— 0. Consider, for example,
the exponent, with which the correlation length diverges.
A diverging correlation length gives rise to an infinite sus-
ceptibility, detected by a nonvanishing respofsiethe mag-
SO (x,t+ € H(t)) = (x,t;H(t + €)). (13)  netization to an infinitesimal increase of the magnetic field.
Clearly, such a behavior is obtained in our problem only if
The latter expression takes the fogfl (x,t;H(t) + Qe) if H the magnetic field increases infinitely slowfliye., (dH/dt)

Also, we can change the origin of time by a trivial reparam-
etrization of the magnetic field, as, e.g., in

is increased linearly in time at a rat®, whence —0], or equivalently if5—0. As 7 is a measure of how
much the system lags behind its local energy minimum, for
§0I(X't+6)_§ol(xyt):f D%Dss(x,t)exp(S) n—0 the system always stays at the tir.ne—depenFjent mini-
mum (as seen by setting=0 in the equation of motignIn

other words, the spin avalanches resulting from a small
ex;{ f dt'ddxfglge) _1], change inH spread instantaneously.
In the »—0 limit, time evolution of the spin field is sim-
(14) ply motion with the minimum in the energy landscape. There
is nevertheless a subtlety involved as to the choice of the
from which it follows that the dynamiC Susceptlblllty is cal- minimum. For examp|e, because of the double-well Shape of

X

culated as the potential, a scalar spin has the choice, during some time
9559 (x.1) interval o'f i_ts_history, betvyeen two positions, both of Wh.iCh
—':Qf dt’ddx’f DsDss; (X ,t')s(x, 1) exp(S). locally minimize the Hamiltonian. If we solve the equation
ot of motion, there is no ambiguity, since we specify one of the

(19 energy minima as the initial condition, and then follow its

Since we are interested in the average of the correlations arftine evolution. In particular, the initial condition correspond-

responses over the random field, from now on we deal wittin9 to the case of a magnetic field which increases from

the average of. This enables us to forget the stochastic .. to + Is one in which all the spins occupy the left
variableh,_, trading it for a new term in the “averaged ac- minimum of their double well§14]. In the path-integral for-

tion.” Taking advantage of the Gaussian naturehgt malism, however, no initial condition is specified. The
' ' weight eS picks all possible solutions, corresponding to dif-

_ R ferent initial conditions. Let us illustrate this point with, as in
Z:j DsDs Ref. [15], the zero-dimensional nonrandom version of our
model, defined by the equation of motion
- Y
Xexp{ f dtddxs~( — 79,5+ KV2s+H— —)} 9
as 77(9ts=—O,)—S(—HerasznL bsY), (18

X exp f dtddxs-h '

= f DsDsexp(S), (16) i
with [using Eq.(2)] i i
~ Ho | : : ]
. Y ) o ! i
Szf dtdxs-| — nd;st+KV2s+H— s : :
+fdto|t’dd Rs t)-s(x,t’ 1 /
/// S_
We have reformulated the theory, originally described by o
a dynamical differential equation, in terms of an action — )
9 s(x,t)], which depends on the entire history of all spins. I?I

ThusSis a functional of the path which the system follows;
the probability weight exi®) picks the physical path and  FiG. 2. Metastable solutions of the single-spin system. The
averages it over disorder. We can then study the symmetrigshysical solution for an increasing magnetic figtlid lin) fol-
and renormalization of the theory, as for equilibrium field lows the lower curveg_) as long as it is present, then jumps along
theories. the dashed line to the upper cunz,j.
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with »— 0. We can imagine as a bead sitting at the mini- or, equivalently,
mum of the quartic potentiaQ(s)=—Hs+as’+bs*, and . .
moving with it. Witha<0 andb>0,Q(s) has a single mini- q—b "q, w—bw. (22

mum if |H| is larger than some valug, and two minima if , : . : ,
|H| is smaller tham\. For H very negative, the bead sits at With this change of units, the coa_rs.e—gralned fields vary on
' ’ the same length scales as the original ones, and the lattice

the single minimum of the curve, which becomes the left toff i d. Third le the field dina t
minimum whenH is between— A andA. At H=A, the left cutott1s preserved. Third, we rescale the fields according to

minimum disappears and the bead moves to the right mini- - ~n
mum. Thus, in particulars(—H)# —s(H) and s(H=0) S(bx,bt) = {s(x,1),  s(bx,bt)—{s(x.t), (23
#0: the motion ofs is hysteretidFig. 2).

. . ) or, equivalently,
The action for this model is d y

s(b~'q,b"%w)—b*"%s(q,w),

- 24
Szf dts(— po;s+H—as—bs®). (19 "S(bflq’bfzw)_)derzz"s(q,w). 24
With the choice

Let (s) be the average of with respect to the weigheS.
Calculating(s) perturbatively, it is easily seefiby counting z=2, (25
the possible occurrences sfands in a diagram that each o dl2
diagram comes with an odd number &Fs. Therefore, {=b ' (26)
(s(=H))=—(s(H)), and in particular(s(H=0))=0, in R
apparent contradiction with the above solution. But as men- [=b"2792 (27

tioned earlier, the partition function is merely the integral of
a & function which imposes the equation of motion. In the the time derivative and Laplacian terms of the action, as well
present case, it imposes as thess terms, become scale invariant. The recursion rela-
tions will be calculated to the lowest nontrivial order in the
P interaction. To this order, no corrections of the parameters
—(—Hs+as?+bs*)=0. (20 7,K, or R of the action in Eq.(17) occur in the coarse-
9s graining transformation, i.ey, K, andR are invariant un-
der our perturbative renormalization.
Thus, in calculating's), we pick all minima of the quartic As in the momentum-space RG treatment of té
form. In other words,(s) is the sum of two terms(s) theory, we consider the quadratic part of the action as a
=(s_)+(s,), corresponding to the left and right minima. Gaussiar(free) theory, and the rest as a perturbatiamter-
The physical “bead” solution is equal ts_) up toH=A action. Following Refs[1—3], for calculational convenience
and then(s, ) for H larger thanA. Similarly, in the case of we treat the disorder-inducesé term as an interaction, in-
our original problem, the quantity®®(x,t) of Egs.(11) and  stead of including it in the Gaussian part. The free theory
(12) does not coincide with the physical solution we arethys consists only of thes part of the action, and the corre-
IOOking for. In addition to the |atte|§0|(x,t) contains other Sponding bare propaga‘[ors are
unwanted solutions corresponding to additional energy

minima. We shall come back to this difficulty and circum- (s(0,0)84(q",@"))o=0,
vent it in the next section, both for the scalar and the vector
mOdelS. <Sa(q1w)sﬁ(q’vw,)>0:07
IV. PERTURBATIVE RENORMALIZATION (30, 0)35(", 0" ) o= Bug2m(w+ ') (2)98%(q+ )
A. Coordinates and fields rescalings; the free propagator 1
Our renormalization-group transformation consists of the X —— 5 (28
usual three steps. First, we coarse-grain the system, i.e., in- — etk -r,

tegrate out the modes with wave number betwaéh and
A(b>1). Second, we rescale coordinatée., change our
length and time unijs by setting

where( ), denotes an average with respect to the Gaussian
weight and the indices run from 1 to The parameter,, is

the g-independent coefficient of the quadrasigs, term in
x—bx, t—Db%, (21 the action. Fourier transforming back in time, we have

(Sa(A,1)Sp(q',t'))o= KqZ—r (29
5a3(2w)d5d(q+q’)exr{—Ta(t’—t)}/77 if t'>t.
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(This is calculated for ,<0. As we shall see;, is indeed g )
negative at criticality. In the »—0 limit, the propagator S:f dtd’xs(— nds+KV?s+H+ast+bs’+- - )
becomes

R. .
. + | dtdt d%=s(x,t)s(x,t") (33
(Sa(a,1)S5(0", ")) o= 8,5(2m)%5%q+q") f 25008t

does not describe the magnetization, unless it is corrected in
X————8(t'—t"). (30  such a way as to remove the unphysical solutions. These are
Ka"=r, inopportunely introduced through E¢P), which should in
. fact be written as

That is, the contraction of,(t) ands,(t") is nonvanishing
only if the two times are equdhctually, only ift’ is infini- oV
tesimally higher thart). With this propagator, it is easily f DS5< — nds+ KV23+H+h—£ X (Jacobian
seen diagrammatically that, although the disorder-indssed
terms couple different times, a renormalized vertex at time
is a function only of the other verticest the same time. t
Thus, slices of the action at different times renormalize in-
dependently from each other, and flow to their respective
fixed points. This justifies the procedure of Ref$-3| of
settingH constant for the calculation of static exponefls.
what follows, we shall need to correct the action of Ecy)
to take care of the problem of multiple solutions. We shall,
for example, expan® about a uniform but time-dependent ; s
value of the field, say some functian(t). Hence the verti- from the functionale”,
ces (coefficients inS), and in particular the “massest’,,,
become functions of the paramete(t). Note that the above

analy5|s of thep -0 I'J[mt is then legitimate only 'f"_(t) IS" volves the unphysical solutionsa restricted, weaker version
continuous, so that(t ") = o(t). Below, we shall define our i 55 hjicaple, and fully serves our purposes. The investiga-
¢’s in terms of the magnetization or analogous quantitieSjon of the critical behavior and the calculation of the corre-
Thus, our analysis holds if we approach criticality from the gnqnging exponents relies primarily on correlation and re-
high disorder sidg. sponse functions, namely the field densitsy and its
susceptibilitygs/dt, which are linear in s For such objects,
B. The scalar model revisited 8(s—s_)+8(s—s')+8(s—s")+--- can be replaced with
The zero-dimensional model discussed in Sec. Il is noth (S —S-—=S'—s"—-.). Furthermore, only averaged quan-
tities are of interest to the study of the critical point, and

ing but the single-spin equivalent to the scalar field. The. ity all ° ; h inside th
apparent contradiction mentioned therein is also present i nearity allows us 1o periorm the average inside the argu-
ment of thes function, leading to

the full model. Let us cals_(x,t) ands,(x,t) the solutions
of Eq. (8), for a magnetic fieldH increasing from—o to _ _

+, or decreasing from- o to — o, respectively. The mag- ols—m-(H)=a(v)], 39
netization measured experimentally is the average ovefhere

space, or equivalently over the random field, of the above

solutions, a()=5" (D +5" (XD +---. (36)
m.. (H(t))=s.(x,t). 31

= f Ds{d[s—s_(x,t)]+ 5 s—s'(x,1)]
+[s—s"(x,0)]+ -} (34)

Therefore, if we substract the quantity

8(s—s')+d6(s—s")+---

we obtain a well-defined theory,
which incorporates only the physical solution and yields all
the correct correlation and response functions. Although this
method is impossible to implemeigsince it explicitly in-

A comparison with Eqs(9) and(16) implies that a weighe®
which properly describes the averaged theory is obtained by

Generically, as is inferred from the single-spin case and Obaddingcr(t) to the argument of the action. Indeed, for
served experimentally, the magnetization displays hysteresis.

In particular,m..(—H)# —m.(H) andm.(H=0)#0. On . e

the other hand, the action of E(L7) is invariant under the <S>Ef DsDsg(x,t)esss], (37
transformation %,S,H)H(—é,—s,—H). This implies that

the average 08 [Eq. (11)] satisfiess®(—H)=—s(H)  we have(s)=m_(t)+o(t); therefore, shifting the field by
and s*°(H=0)=0. As explained aboves® contains un- o(t) yields

physical contributiongcorresponding to the many minima in

Fhe energy Iandscapm ad_dltlon_to the physical solutiors( f DSDss(x,t)eS5s+0] :j DSDS[s(x,t) — (1) ]S>

in the case of an increasirt), i.e.,

X, 1) =s_(x,t) +s' (X, ) +s"(X,)+---. (32 =(&-o®=m-(1). 38

The average spin dynamics is thus properly described by the
Hence the action corrected action
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S=f dtdixS(— 7,5+ KV 25+ Ay+A;s+Ars2+ Ags?)
R. “
+f dtdt’ddXES(x,t)s(x,t’), (42)

whereﬂizl’s are functions oH througho andﬁs is nega-
tive to prevent the spins from diverging in magnitude. Fur-

thermore, it is easily shown than is an ever(odd) function
of o for i odd (even. In particular, sincec—0 asH—

+ oo, we also have tha7!\2—>0 asH— *. Now, in order to
find the critical point, let us expand the field about some

value wu(t), so as to cancel&z. With the choice u=
—A,/3Az, the action in terms o’ =s— u becomes

FIG. 3. Schematic shape of the parameteas a function of the
magnetic field.

S= f dtdxs(— 7d,s' + KV’ +AJ+Als +Ass'3)
S=9s,5+ 0] R

+f dtdt’ddxié(x,t)é(x,t’), (43)
=f dtd?xs(— s+ KV2s+H+Ay+ A s+ A,s?

where the coefficients have been correctedubySince(s)
—*ow as H—*ow,(s) crossesuy at a givenHg, ie.,
(s(Hg))=p(Hg). Hence (s'(Hy))=0, which implies in
general thaf\j(Hy) = 0. The action thus reduces to that stud-

R. “
+AgsS+ - -)+f dtdt’ddx§s(x,t)s(x,t’), (39

where ied in Refs.[1-3], and is critical for a specific amount of
Ao=—7]c?ta+a0+b0'3+-~-, disorderR.
A;=a+3bo?+- -, C. The vector model
1. The appropriate action
A,=3bo+- -, (40) ppropri I

The first question in the case of vector spins is whether
As=b+---, the action of Eq.(17) correctly describes the system. The
single-spin problem is identical to that of a bead moving in a
Mexican hat tilted byH+h, the sum of the externah(t)
and the quenched random field The bead simply turns
Although we cannot obtain the precise formeeft) with-  around the bump of the hat, i.e., the spin always points in the
out solving for the many minima, its qualitative shape isdirection of H+h, as in the equilibrium problem. The mo-
easily found. Consider a very larggositive or negative  tion is governed by a single minimum, and there is no hys-
magnetic field. The unphysical minima are due only to theteresis. Similarly, mean-field theory reduces the time evolu-
spins in a very large random fiely such that the potential tion of the spin field to that of a single degree of freedom,
they feel still has two minima. When we take the averageand yields no hysteresis for any value of the disorder. These
the minimas’+s"+ - - contribute too only with a very  observations may suggest that E@7) properly describes
small weight[ <exp(—h?%2R)], implying the problem, and that criticality occurs =0, simulta-
neously for the components of the field parallel and perpen-
dicular toH. However, although a single spin has only one
minimum in its energy landscape, a configuration of several
; spins may have many. Consider a system composed of two
—m_ atH=0. Thus,o(H) has a bell shape, shifted to the spins of unit length, in an increasing magnetic field and

rig_ht since the sum ob and m- is an odd function_o_iH with random fields+ A and — A perpendicular tH, as il-
(Fig. 3. The parametes(t), which corrects the coefficients %ustrated in Fig. 4.

in S, breaks the up-down symmetry present in the action o The Hamiltonian for this system is
Eqg. (33). This is physically required, since in a hysteretic
system, thénonequilibrium) magnetization breaks that sym- H=—Js,-S5,— A-(S,— ) —H-(5,+5,). (44)
metry, in particular aH=0.

To discuss the relevant terms in the action, we apply af 9, and @, are the angles of the spins with respecHtothe
renormalization transformation in -6e dimensions. All  minimum energy path that the spins follow imposgs=
terms of the action higher than cubic srare irrelevant, and —g,=¢, and in terms of9, the energy is
after a large enough number of coarse-graining steps, we are
left with the renormalized action H=2{J(sin#)?>— A sinf+H coss}—J. (45)

c—0" as H—*o, (41

Furthermore, it follows from the definition of that o=



1362 RAVA da SILVEIRA AND MEHRAN KARDAR PRE 59

S=9s s+ 0]
“A A = J' dtddX’\%‘{— 7]0"t(SH+ o)+ KVZS”
! ! +H+cy(s+ o)+ e[ (s+ )2+ ](sy+ o)+ -}
0 o wRe o
XS, S, % + | dtdt'd xst(x,t)s”(x,t’)Jr dtd®xs, -{— na;S,
-------------------- +KV3s, +¢45, +C,[(sj+0)2+L]s, + - -
FIG. 4. lllustration of the two-spin toy model described in the L Cas+ ol ” ) LISt j

text. - 2
+ j dtdt’ d9xs, (x,t)-s, (x,t"), (46)

For A<2J and H=0, the energy as a function df is a ]
symmetric double well centered ah= /2 (Fig. 5), similar where the su_bscrlptbandL refer to the components parallel
to the scalar single-spin energy landscape, with two minim&nd perpendicular to the magnetic field. Expanding the poly-

at sing=A/2J. A nonvanishingH tilts the double well, and Nomials and absorbing the parametein thereby corrected

ultimately suppresses one of the two minima. The ferromaggoeff'c'ents leads to the form

netic interaction causes the two spins to pull each other back
before jumping ahead, thereby investing theomponent s:f dtdixs)(— 7d,s|+ KV2S)+Ag+Ars|+Assl +A,S,
field’'s motion with a hysteretic, uniaxial-like character. That
is, the two-spin toy system as a whole goes over an energy _ R. R
barrier, reminiscent of the motion of a scalar spin and in +Agsf+Agssz+ - ~)+f dtdt’ddXESH(x,t)sH(x,t’)
contrast with that of a single multicomponent spin which
turns around the energy barrier. Interestingly, the Ismgs- 4o 5
teretio behavior of thelongitudinal component results both +J’ dtd®xs, - (= 7d;s. + KV, +Bys, +Basys,
from the interaction and from the presence ofransverse _
random field. +Bys’s, +Bysfs, + - -)

In the zero dimensionalsingle spin or infinite dimen-
sional (mean fiel(_jl case, the system follows a sipgle mini-_ +J' dtdt’ddeE;i(x,t)~§L(x,t’). (47)
mum and there is no hysteresis. When fluctuations are in- 2
cluded, however, the above toy system shows that many
minima appear, allowing for a hysteretic behavior. Thus, as-learly, only even powers of, are present in the first line,
in the scalar case, the action of H@7) has to be corrected While only odd powers occur in the third. A term of order
in order to remove the unphysical minima. Following thein s, trivially (i.e., ignoring the coarse-graining step which
procedure of Sec. IVB, we replacgx,t) by s(x,t)+o(t),  couples different order terms scales with b2+9z¢P
to obtain, if o is parallel toH, the corrected action =p2P~(P~1)2 |n dimensionsd<4, all terms are relevant,

and a nontrivial fixed point at long length scales cannot in

. general be reached by tuning merely two quantities, namely
the external magnetic field and the amount of randomness. It
is much the same fod=5, in which terms up tqp=5 are
relevant. In 6- € dimensions, however, all terms wifh>3
are irrelevant under the RG, leading to an effective action of
the form of Eq.(47), with any terms not displayed set to
zero. Including the corrections due to coarse graining, to
H(9) lowest nontrivial orderin the interaction and ire=6—d)
H=0 the recursion relations for the remaining 10 vertices read

AL=b3" Ag+ (1 +2A1) A+ (n—1)(1+2B1)A,],

AL=bZ A+ 3(1+2A;)Ag+ (n—1)(1+2B1)As],

2

B,=b?[By+ (n+1)(I+2A;)Bs+ (1 +2B;)B3],
)

FIG. 5. Energy profile of the two-spin toy model, for different A,=b!*<ZA,+ 18A,A5+2(n— 1)K2E3+ 2(n— 1)BZK3],
values of the magnetic fieldl. At H=0, the double well is sym-

metric. Larger values dfi tilt the curve, eventually suppressing the — =~ — — — —  ——
left minimum. Ap=D" T AT 2A2A3+2(N+ 1)AyB3+2ByAs+ 4A5A5],
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1 _ i+ el2 =y A -
Bz_b €} [BZ+4BZB3+2(n+1)Bng+ZBzA3 S:f dtddXSl'[(_77(9t+KV2+rJ_)Sl+BgSJ2_SJ_],
+4A,B5+4A,B;], (52)
L. ) —— wherer, denotes the corrected masee below As in the
AZ=DbTA;+18A5+2(n—1)A3zB;], case of the scalar model, this action is critical for an appro-
. L . . o priate value of the disorder, or equivalently of the “mass.”
AL=bTAz+4A5+6AzA;+2(n+1)A3B3+4A3B3], The recursion relations far, andu, =R[In b/(4m)|B; can

L be read off from Eq(48) by settingA;=A;=B,=B3;=0, as
B.i=bBs+2(n+7)B2+2A;Bs],
=018 M rl=b2r, +[(n—1)+2](1+2r,)u,},
R/ —heTR. 4+ AR R R LAAR 52
B, =bBy+4B2+2(n+1)ByBy+ 6A3B;+4A;B;], e ~ 2 (
(48) u; =b*u, +2[(n—1)+8]u’}.
CA2(R2_ 2 3. From these recursion relations we can obtain the static expo-
wherel A (b 1)/.%_ .In b and a_factor oRIn bﬁ‘m) 'S nentw with which the correlation lengtl diverges. By defi-
absorbed in a redefinition oA, Ap, Bz, A3, As, B3, nition ¢é~(R—Ry) "~|r—r % which, along with &

and B,. [For the derivation of the corresponding relations=&b  and  @r'/dr)eq poini= D2~ {(n=D)+2V/[(n—1)+ B} e

for the scalar model, the reader is referred to REFS]; the  =DbYr, yields @Y |r—rc) "=[r—r "b7%, ie, vy, =1,
extension to the effective action of E(17) is straightfor- and
ward]

1 1(n-1)+2

14

(53

2. Ising criticality “2t2m-1+8°¢

Clearly, a nontrivial fixed point for all 10 vertices cannot N hat th . f Ea51) is identical h itical
be reached in general if only two quantities are to be tunedOt that the action of Eq51) is identical to the critica

However, if R is appropriately tunedd; flows to its fixed a}ction forn—1 (weakly co.upleai s_calar fields, .With rota-
(finite) value whileB, grows indefinitely. Then, under the tional symmetry. It follows immediately from this consider-

RG, the interactions in the perpendicular components pedtion that the recursion relations and exponents for the lon-
' itudinal (Ising-like) fixed point are identical to those

come less and less important with respect to the quadratlg -
term. After sufficient rescalings, the theory becomes Gauss“ialcmated here, W'ﬂm_. 1=1. ,

ian in the perpendicular fields which can be integrated out, In the reduced action, the transverse components’ bare
resulting in an effective action fag identical to the scalar mass becomes

action of Eq.(39). Thus, the critical point of ou®(n) model -,

is generically described by the same action as in Réfs3], ri=Bi+BoA+Ba\" (54)
yielding identical recursion relations and exponents. This can . . o
be physically understood in the following way: if a configu- | e critical liner? (u,) is in the lower half ¢, <0) of the
ration of several spins gives rise to many minima, a coarsell . U) plane. Sincé\g— *o asH— =, Eq.(50) implies
grained vector-spin system roughly looks like an Ising sysihat\ also goes from- to + as the field is increased
tem, leading to scalarlike critical behavior. The latter occurg(similarly to A;<0 [Eq. (42)], we haveB3;<0). Thus,r

for a nonvanishing value of the magnetic field or the magneerosses the critical line for a given value l8f provided that
tization_, at which the full rotational symmetry of tt@(n) 53_453[51_&(%)];0, i.e., unlessB; is too negative
model is broken. (for a Mexican hat potential, we expeBt>0). This may
not be true ifA, is a discontinuous function d¢i. But Ag(H)
is clearly continuous for critical and higher disorde¢a.

In the case considered above, the longitudinal field isvery high disorder, though, may suppress this transverse
massless and the transverse components are massive. Alteriticality by renormalizingr, into large negative values.
natively, one should be able to reach another fixed pointWhether or not the fixed point controlling the transverse
which incorporates the reverse situation. In E4j7), let us criticality is reachable experimentally depends on what re-
expand the longitudinal field about some paramaig), so  gion of the space of the theory’s parameters is swept when

3. Transverse criticality

chosen as to cancel the linear teAy, i.e., we write the physical quantities at hand in the experiment are varied.
Unlike many equilibrium problems in which the symmetry is
snzsﬁ +X, (49 broken by an infinitesimal field, criticality can occur here at
large values oH, allowing for non-negligible higher-order
with \ satisfying terms, such asi’sf or H?s{s’, in the Hamiltonian. These

terms appear in the theory as m_odifiéd_rong functional

dependences of the coefficiems,A; ,B;,B;, on the mag-

i o i _netic field, which, depending on the trend, may favor a trans-
The theory is then Gaussmnsq“l. Integrating out the longi- | arse instability.

tudinal field, the actiorfor the transverse fieldeduces to Eq. The transverse critical point corresponds to an infinite
(42) with (s, ,s,) instead of §,s), andA;=A,=0, i.e., susceptibility at somél, , resulting in a spontaneotians-

Ao+ AN+ ANZ+AN3=0. (50)
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verse magnetizationA similar phenomenon was noted for =0)=0. Finally, by identifying the relevant parametet

the case of a puréherma) system in Ref[16]. There, how- we have established that only a single additional physical
ever, the appearance of a transverse magnetization is due t@aantity needs to be tuned to reach 1@én) fixed point
magnetic field which oscillates at high frequency. It is a(provided thatH, crosses zero as the physical quantity in
purely dynamical effect, not observed in the-0 limit. In  question is varied, at =0).

our case, the effect is due to the presence of a quenched The symmetric fixed point is characterized by three rel-
randomness, and its nonequilibrium nature lies in the metaevant parameters, namalyandH, with the usual exponents
stability of the minima occupied by the system during itsy,=2—e(n+2)/(n+8) andyy=3—¢€/2, and o with y,
history. This transverse instability, though, differs from the =d/2—2, to O(€). The parameter is a measure of the
longitudinal criticality in that it occurs for a range of disor- deviation from a symmetriénonhysteretigtheory atH=0,
ders, rather than at a specifically tuned amount of randomand, according to the above exponents, is much less relevant
ness. Its underlying physical mechanism may, for examplethan the other symmetry-breaking tet or of the mass,

be illustrated by two beads, attached to each other by & O(e). Referencd4] notes the fact that the “critical re-
spring, and flowing on the two sides of a Mexican hat'sgion” is unusually large in the scalar model, as signaled by
bump, as it is progressively tilted. At some point, it might power laws with surprisingly high cutoffs even a few percent
become favorable for one of the beads to jump on the oppao one hundred percent away from the critical disorder, and
site side of the rim, and to continue its motion next to thebriefly discusses possible origins of this phenomenon. This
other bead, corresponding to a transverse ordering. observation, along with the weaknessw$ relevance, sug-

At H,, the transverse components choose one of thgests in our case that even away from @gn) fixed point,
many minima, which breaks the rotational symmetry in thean O(n)-like behavior might be displayed at short ranges by
(n—1)-dimensional transverse space. We therefore have tge system, before crossing over to an Ising-like behavior at
correct the action of Eq47) for H>H, , as we did for the |ong enough time and length scalés.
longitudinal field. This, however, does not alter the analysis As mentioned in the Introduction, a vanishing magnetiza-
of the longitudinal criticality. By shiftings, , we eliminate  tion does nota priori ensure a fully rotationally invariant
the transverse linear term and can then follow the same praystem; higher moments could in general display anisotropy.
cedure as before. We used the fact that the correction to E¢n that case, a complete theory would break the rotational
(47) vanishes folH — =, and this clearly still holds here. symmetry, leading to anisotropic exponents different from

Yr,Yn, andy, above, which are the outcome of a restricted
4. O(n) criticality action that properly describes only quantities linear in the

In the above, we examined two distinct fixed points, cor-spin field. In general we may ask the following question,
responding to an infinite longitudinal susceptibility and awhich applies to the Ising, transverse, a@{n) cases.
transverse ordering, respectively. For a specific choice of thé/ould a complete theory yield the same exponents as our
theory’s parameters, the two should merge into a single, roresticted theory? The latter correctly describes the magneti-
tationally invariant(in the n-dimensional space of the fie)ds zationm_(t). That is, if one were able to calculate the path
fixed point, at which all components become simultaneouslyntegral
critical. In addition to the magnetic field and disorder, how
many quantities should we tune to reach suclOén) fixed
point? While Eq.(47) is a suitable formulation of the model - S[s,st o]
when the symmetry is broken in the longitudinal direction, f DsDss(x,ye ' (56
the form of Eq.(46) is more appropriate close to a fully
rotationally invariant theory. An RG transformation can be
carried out for it, as was done for the action of E47). one would obtainm_ as a function ofH(t), R, and an
Since o (t) is spatially uniform, only itsg=0 mode is non- additional tuning parametécorresponding td1,), and thus
vanishing. The parameter, therefore, does not participate the associated exponents describing the critical singularity of
in the coarse-graining transformation and its normalization ishe magnetization. It is easy to see that, as for the nonrandom
given by the rescalings of the coordinates and the fields asequilibrium thermal Landau-Ginzburg model, the exponents

Yr,Yu, andy, have a one-to-one correspondance with the
o' (t)={"to(b’)=b"*"?¢(b%). (55  exponents that characterize the singular behavior of the mag-
netization, as well as with those associated with a number of
other quantities, such as the correlation length. This imme-
diately implies an affirmative answer to the above question;
=c;, A3=A3=B3=B3=c,, andA,=A,=B,=0. the requirement that the action should describe the physical

By tuning both the magnetic fieldl andHy, defined as magnetization is a strong enough constraint for the theory to
the zero ofo [o(Hg)=0], to zero, the action of Eq46)  correctly generate the singularity of, e.g., the correlation
reduces to the form of E@51), with n fieldssrather than the length. Evidently, this argument does not apply to the critical
n—1 components o§, , which is critical for a given value behavior of higher moments of the spin field distribution,
of the disorder. Consequently, the recursion relations andnd whether or not the latter are isotropic at criticality is an
exponents are identical to those characterizing the transvergsteresting open question. In fact, even the isotropy,oét
critical point, but withn replacingn—1. Furthermore, since theO(n) critical point may seem surprising at first, since the
H=0 and the action is fully rotationally invariant, hysteresis history of the system apparently sets up an anisotropic con-
is suppressed at th@(n) critical point; in particular,m(H text for the spins’ motion. It is consistent, however, with the

The recursion relations fdt, c,, andc,, on the other hand,
are obviously given by Eq(48), with Ap=H, A;=B;



PRE 59 CRITICAL HYSTERESIS FORm-COMPONENT MAGNETS 1365

fact noted in Sec. IV A that different time slices of the action nonequilibrium transverse magnetization is unveiled and ex-
decouple under the RG in thg—0 limit, in which the static amined using a perturbative renormalization scheme. In ad-
exponents are calculated. dition, we have clarified several issues pertaining to the path-

As the reader may have noticed, our recursion relationintegral formalism, in particular to the structure of time
and exponents id=6— € are none other than the recursion dependences, and to the problem of multiple solutions. These
relations and exponents for the pufequilibrium) O(n) analyses are useful for our treatment of the problem, as well
model in d=4—¢. Indeed, dimensional reduction to two as for a clearer understanding of earlier works.

lower dimensions holds perturbativel2,3,17,13. This al- An interesting question which remains open is that of the
lows us to obtain, with no further calculational effort, the lower critical dimension. In the fully rotational case, naive
expansion forv to higher orders ire [18]. dimensional reduction suggests that the lower critical dimen-

The dynamic exponert, on the other hand, cannot be sion is 4. If this were the case, no vector criticality should be
obtained from a time-independent model. How is the renorobserved in three dimensions. Several scenarios are possible.
malization procedure modified when#0? In the coarse- For example, the hysteresis curve may display a jump for
graining process, vertices which couple different times ardow disorder and be continuous for high disorder, but with-
generated. In particular, a nonlocal quadratic term of the typ@ut the intermediate limit case of a continuous curve with a

diverging slope at a given point. A more probable scenario is

L ;L one in which the hysteresis curve is already smooth for an
J',wdt%‘(t )5 (DT 1) G?  infinitesimal amount of disorder.
is generated in the action, whefres some functior(contain- ACKNOWLEDGMENTS
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APPENDIX: EXPANSION ABOUT MEAN FIELD THEORY
The first term contributes to the coarse-grained “mass,” the ) o _
second results in a correction mIn fact, the perturbative ~ In Refs.[1-3], the effective action is written as an expan-
calculation we just briefly described is similar to that doneSion about mean-field theoFT). In such a formulation,
by Krey [19] for the time-dependent thermal random field the linear term in the actiditorresponding té, in Eq. (47)]
model, where he calculatego O(€%), giving to lowest non-  is vanishing. The “masses,” i.e., the coefficiemisandr

trivial order in e, [corresponding t&\; andB; in Eq. (47)] of the parallel and
perpendicular quadratic terms are calculated as the elements
n+2 of a particular response tensor within MIFI3,1-3. In this
z=2+ €. (59 appendix, we calculate; andr, , starting from the mean-
(n+8)?2 I

field equations of motion, and find that, generically,
<& . This appendix thus reaffirms that criticality is Ising-
like in general, as found in Sec. IV, and makes contact with
the earlier methodology of Refgl-3,13.

MFT is defined by an infinite-range coupling, leading to
the equations of motion

The main aim of the present paper was to extend earlier
work on critical hysteresis to the case of an ordering of con- 78;S(X)=m(t) +H(t) +f(t) +h(x) + ¢;S(X) + c,3(X)*S(x),
tinuous symmetry. Our central result is that, generically, (A1)
criticality is Ising-like, i.e., the critical exponents calculated ) ] _ -
for a scalar field moddl1—3] still hold for a vector field. By Wherem(t) is defined self-consistently byi(t) =s(x,t)[s=o
tuning a single additional quantity, however, a fully symmet-andf(t) is a test field. The “masses” are the static compo-
ric fixed point can be reached, to whi€i(n)-like exponents nents of the tensobs/ 6f—1, wherel is the identity matrix
are associated. Furthermore, the possibility of a spontaneo(i$3,1-3. We have

(Here,n is the number of components that become massle
at criticality.)

V. CONCLUSION

dmy(H+Hy Hy, ...) dmy(H+H; Hy, ...
1 1,Hz, ) ( vH2, ) x(H) 0 0
om
ﬁz 5m2(H+H11H21--') 6m2(H+H1,H2,...) = 0 XLE) H
- 51, X1 (H)

Hy=H,=---=0
(A2)
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(We considerp—0, so responses are nonvanishing only atfor the transverse components. Whence

equal times, and only the static part remains. Also, in MFT,
the magnetization is always parallel to the magnetic field,
leading to vanishing off-diagonal elements and to the rela-
tion y, =m/H [8].) In order to calculate the relevant tensor,
let us split the field betweenm andH, in such a way as to
satisfy Eq.(A2) for effective magnetization and magnetic
field. That is, we write the equations of motion in the follow-
ing fashion, with correctedh andH, and with no additional
field,

a5 =| m+ XLt +H+—1 f| | +hy+cqsp+cp8
NS =| M 1+x I 1+x I I7 €18 T C2SS
(A3)
for the longitudinal component, and
s, =| 2t |+ f, |+h, +c.5 +c,S%s
70tS1 1+XLL 1+XLL | TC15 TS5
(A4)

and

PRE 59
! 0
_ 1
65 0 ) 0 “ e
52 :I.-i-)(l (AS)
1
0 0 T
1+x,
B 1 _ 1 _ 1 . (AB
"= 1+’ LTy, 1rmn: A0

thus,r(H)#r (H) in general.
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